
NASA Contractor Report 198289

A Formallv Verified Algorithm
Synchrohation Under"a Hybri
Model

John Rushby
SRl International, Menlo Park, California

Contract NAS1-18969

March 1996

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681-0001

for Clock
.d Fault

A Formally Verified Algorithm for Clock
Synchronization Under a Hybrid Fault

Model

1 Final Report for SRI Project 8200, Task 7

John Rushby
Computer Science Laboratory

SRI International
Menlo Park CA 94025 USA

lThis work was supported by the National Aeronautics and Space Administra-
tion, Langley Research Center, under contract NAS1-18969.

Abstract

A small modification to the interactive convergence clock synchroniza-
tion algorithm allows it to tolerate a larger number of simple faults than
the standard algorithm, without reducing its ability to tolerate arbitrary or
“Byzantine” faults. Because the extended case-analysis required by the new
fault model complicates the already intricate argument for correctness of the
algorithm, it has been subjected to mechanically-checked formal verification.

The fault model examined is similar to the “hybrid” one previously used
for the problem of distributed consensus: in addition to arbitrary faults, we
also admit symmetric (Le., consistent) and manifest (i.e., detectable) faults.
With n processors, the modified algorithm can withstand a arbitrary, s
symmetric, and m manifest faults simultaneously, provided n > 3a + 29 + m.
A further extension to the fault model includes link faults with bound n >
3a + 2s + m + 1 where 1 is the maximum, over all pairs of processors, of the
number of processors that have faulty links to one or other of the pair.

The mechanically-checked formal verification of the modified algorithm
was achieved by extending one for the classical Interactive Convergence al-
gorithm, and was accomplished relatively easily. A mechanically-checked
formal specification and verification is a reusable intellectual resource whose
initial cost is amply repaid by the support it provides for inexpensive and
reliable investigation of modified assumptions and algorithms such as those
reported here.

iii

Contents

1 Introduction 1

2 The Algorithm and Its Analysis 5

2.1 The Interactive Convergence Algorithm 5
2.2 The Hybrid Fault Model and the Modified Algorithm 9
2.3 Analysis of the Modified Algorithm 10
2.4 Extensions to the Fault Model 12

2.4.1 12
2.4.2 Link Faults . 13

Extending the Symmetric Fault Mode

3 Formal Verification 17

4 Conclusions 21

References 25

A The Improved Bound on Synchronization Achieved 29

B A Fkagment of the Formal Specification and Verification 33

V

Chapter 1

Introduction

Fault-tolerant architectures for digital flight control in civil aircraft provide
the context for the work described here. These architectures generally use
relatively few processors (from four to nine) and a topic of major practical
concern is the development of fault-tolerant algorithms that can withstand
as many kinds and as large a number of faults as possible within a given
level of redundancy. Byzantine-fault-tolerant algorithms are attractive in
this context because they can withstand any kind of fault, but they require
a great deal of redundancy and can be overwhelmed by relatively few faults,
even if the faults are of a simple kind that could be tolerated by other
algorithms.

An interesting line of investigation, therefore, is to seek algorithms t h a t
can tolerate faults of many different kinds, and that “use up” redundancy
according to the severity of the faults that actually arrive. Among t h e ear-
liest algorithms of this type was one by Perry and Toueg for distributed
consensus under combinations of processor and communication faults [161.
Extending such algorithms to tolerate truly arbitrary (Byzantine) faults is
difficult because the possibility that a fault may display asymmetric s y m p
toms complicates the treatment of all faults. A complementary approach is
to start with Byzantine-fault-tolerant algorithms and then try to improve
their treatment of simpler fault modes. Meyer and Pradhan [12] and Caray
and Perry [3] have developed fault models and algorithms of this kind by
adding crash faults to the classical Byzantine model. Thambidurai and
Park [23] propose a more elaborate hybrid fault model: they widen the
notion of crash faults to include any fault that produces manifest (i.e., de-
tectable) symptoms, and they allow symmetric faults (i.e., those that exhibit

1

2 Chapter 1. Introduction

incorrect but consistent behavior) in addition to Byzantine faults. Tham-
bidurai and Park present a modification to the Oral Messages algorithm of
Lamport, Pease and Shostak [7] that achieves consensus under their fault
model; this algorithm is employed in the MAFT (“Multicomputer Architec-
ture for Fault Tolerance”) system for flight-control applications [5]. Unfor-
tunately, the algorithm and its proof of correctness are flawed (though its
implementation in MAFT is not). The flaw was detected through a failed
attempt at formal verification by Lincoln and Rushby, who then developed
a corrected algorithm [lo], and a mechanically-checked formal verification
of its correctness [8,9].

All the works cited above deal with consensus; clock synchronization
in the presence of multiple fault modes has received less attention. Infis
and Moore [4] argue that the incidence of truly Byzantine (i.e., asymmet-
ric) faults can be reduced to a very low level by suitable hardware design,
and they present a synchronization algorithm that withstands t “all-but-
Byzantine” faults with only 2t + 1 processors (Byzantine fault-tolerant syn-
chronization requires 3t 4- 1 processors). Garay and Perry [3] state that
they have algorithms for clock synchronization under their “Byzantine plus
crashes” fault model, but they do not describe them.

In this report, I consider the problem of clock synchronization under a
fault model similar to that introduced for consensus by Thambidurai and
Park. I show that a slightly modified version of the classical Interactive
Convergence algorithm of Lamport and Melliar-Smith is able to tolerate
a arbitrary, s symmetric, and m manifest faults simultaneously, provided
n > 3a + 2s + m. I also present an extension to the fault model that admits
a type of (intermittent) link fault and show that these are no more expensive
to tolerate than manifest faults.

Algorithms such as this are intended to support safety-critical appli-
cations, so strong assurance is required for their correctness. Unfortu-
nately, there is evidence that the traditional processes of informal proof
and peer review do not always provide this assurance reliably. For exam-
ple, as noted above, the first published algorithm for consensus under a
hybrid fault model was incorrect; the error was detected and corrected with
the aid of mechanically-checked formal verification. In other cases, the al-
gorithms have been correct, but the proofs that support that claim have
been flawed, and some of the underlying assumptions have been incom-
pletely or improperly characterized. For example, the interactive conver-
gence clock synchronization algorithm of Lamport and Melliar-Smith, which

3

provides the foundation for the algorithm examined here, was published with
a proof of correctness supported by five lemmas [6]. Formal verification of
this argument by Rushby and von Henke revealed that the proofs of the
main theorem and of all but one of the lemmas are flawed [17,18]. Nu-
merous Byzantine-fault-tolerant clock synchronization algorithms have ap-
peared since those of Lamport and Melliar-Smith; Schneider presents a uni-
form treatment that includes almost all the known algorithms [20]. Shankar
constructed a mechanically-checked formal verification of Schneider’s argu-
ment and, again, several small errors were detected 121,221. (Schneider and
Shankar are preparing a corrected treatment for publication.)

These deficiencies in proofs of distributed algorithms for consensus and
clock synchronization were all discovered and corrected with the aid of mech-
anized verification systems. The proofs concerned are not mathematically
deep, but they involve rather intricate arguments, considerable case andy-
sis, and many delicate assumptions-characteristics that particularly favor
the painstaking bookkeeping of mechanized verification.

The algorithm presented here has been subjected to mechanized verifica-
tion using the EHDM system.l Because the algorithm is a variation on Inter-
active Convergence-which had already been analyzed using EHDM [17,18]-
development of its formal specification and verification was not particularly
difficult or time-consuming. The support provided for reliable and inex-
pensive investigation of modifications to algorithms is an inadequately rec-
ognized benefit of formal verification. In the present case, formal verifica-
tion was instrumental in developing an algorithm for clock synchronization
which, among all those suitable for architectures of the kind used in digital
flight-control applications, seems to provide the most robust fault tolerance
for a given level of redundancy.

The fault model, the modified algorithm, and its analysis are presented
in the next chapter. The mechanically-checked formal verification of the
algorithm is described in Chapter 3. Conclusions are presented in the final
Chapter.

EHDM [19] is a verification system constructed at SRI whose distribution is controlled
by the US Government. PVS [14] is a system of similar capabilities that is freely available
from SRI-by anonymous ftp from f tp. csl . sri . com/pub/pvs or by World Wide Web
from http://wwo.csl.sri.com/eri-csl-pvs.htr1.

Chapter 2

The Algorithm and Its
Analysis

The starting point for the algorithm developed here is the Interactive Con-
vergence Algorithm (ICA) of Lamport and Melliar-Smith. To indicate the
modifications made to accommodate a hybrid fault model, it is necessary to
present a few elements from the formal treatment of the classical algorithm;
for brevity, I omit many details (including the definitions of good clocks
and nonfaulty processors). The notation, terminology, and the naming and
numbering of assumptions and lemmas are those introduced by Lamport
and Melliar-Smith [6]; however the statements of assumptions, lemmas, and
constraints are from our corrected treatment [17,18] which, among other
changes, eliminates the approximations used by Lamport and Melliar-Smith.

2.1 The Interactive Convergence Algorithm

Two notions of time are distinguished: clock time is the internal estimate of
time that a processor obtains from its clock, while real time is an external,
abstract notion of time that provides a common frame of reference. Upper
case Latin and Greek letters are used for clock time quantities, lower case
for real time.

The goal of ICA is to maintain the clocks of redundant processors within
some bounded skew 6 of each other: that is to say, the real time difference
between the instant when the clock of processor p reads T and that when

5

6 Chapter 2. The Algorithm and Its Analysis

the clock of processor q reads T must be less than 6. All processors have
reasonably accurate clocks with a maximum rate of drift from real time given
by p, and are synchronized within some bound 60 initially. Each processor
engages in the synchronization protocol every R seconds, and for a duration
of S seconds, according to its own clock. During synchronization, each
processor determines the differences between its own clock and those of other
processors, forms a “fault-tolerant average” of those differences, and adjusts
its own clock by that amount. Processors may not be able to determine
the differences between their clocks with absolute accuracy: the quantity E

bounds the error in A$$, which denotes the difference between the clocks
of processors q and p , as determined by p during its ith resynchronization.
The key to making a clock synchronization algorithm resistant to Byzantine
failures among its components is the use of a “fault-tolerant average” in the
adjustment step [20]. ICA is characterized by use of the egocentric mean
as its fault-tolerant averaging function. To compute the egocentric mean, a
processor replaces all differences AfJ larger than a fixed quantity A by zero,
and then calculates the arithmetic mean of the resulting set of differences.

To formalize this description, clocks are modeled as functions from clock
to real time: c J T) denotes the real time at which processor p’s physical
clock reads T . Clocks are adjusted by subtracting a correction from their
readings; the correction for processor p in the ith R-second period is denoted
Ct), and

cF)(T) = cp(T + Ct))

is defined as the logical clock for p during period i . The ith period is denoted
R(’) and runs from clock time T(’) to T(’+’), where T(’) = To + iR (i 2 0)
and To is an arbitrary constant. Synchronization takes place during the last
S seconds of each period; S(’) denotes the interval [T(’+’) - S, T(’+l)] .

The
first says that the skew between the clocks of nonfaulty processors must
be bounded (i.e., the algorithm must maintain synchronization).
Clock Synchronization Condition S1: For all processors p and q, if all
but at most t processors (out of n) are nonfaulty through period i and if p
and q are nonfaulty through period i, then for all T in R(’)

ICA is required to maintain two conditions called S 1 and S2.

The other condition, S2, which is ignored here, says that corrections must
be bounded (this is needed to eliminate trivial solutions).

2.1. The Interactive Convergence Algorithm 7

ICA requires that the processors start off with their clocks approximately
synchronized, and that each nonfaulty processor can read the difference be-
tween its own clock and that of another nonfaulty processor with a bounded
error. Any implementation of the algorithm must satisfy these two assump-
tions which, for historical reasons, are called A0 and A2. For brevity, A0
is ignored here. Note that in order to read clock differences, the processors
may already need to be synchronized, so S1 and S2 are required to hold in
A2.
Assumption A2: If conditions S1 and S2 hold for the i’th period, and
processor p is nonfaulty through period i , then for each other processor q , p
obtains Q value At; during the synchronization period S(’). If p = q, then
At; = 0; otherwise, if q is also nonfaulty through period i , then /Atdl 5 S
and

/c!)(Z“ + At;) - c!)(Z”)l < E

for some time TI in ,!?(‘I. (The value is unconstrained if q is not nonfaulty
through period i.)

The Interactive

Algorithm ICA:

Convergence Algorithm is specified as follows.

where

A?$ = if lAP$l < A then A?: else 0.

Thus, the correction A!) is the egocentric mean of the clock differences
A:!, where A is a parameter to the algorithm that determines when a clock
difference is “too large.”

The proof that ICA achieves S 1 and S2, subject to A0 and A2, depends
on 5 lemmas and on seven constraints on its parameters. The most inter-
esting of the Lemmas are numbers 4 and 5 , which consider the contribution
to the skew between nonfaulty processors p and q due to the differences
they observe between their own clocks and that of processor r . Lemma 4
considers the case where r is nonfaulty, Lemma 5 the case where it is faulty.

8 Chapter 2. The Algorithm and Its Analysis .
Lemma 4. If the clock synchronization conditions S1 and S2 hold for i ,
processors p , q, and T are nonfaulty through period i + 1, and T E S(')), then

Ict)(T) + A:$ - [c f) (T) + A:;][< 2 (~ t pS) + PA.

Lemma 5. If the clock synchronization conditions S1 and S2 hold for i ,
processors p and q are nonfaulty through period i + 1, and T E S('), then

If there are n processors, of which t are faulty, the skew between non-
faulty processors p and q in the i + 1st period is the mean of n - t terms
derived from Lemma 4 and t terms derived from Lemma 5 , plus some cor-
rection terms. More exactly, it is

To maintain synchronization, this expression must be no greater than 6.
Rearranging terms, this gives
Constraint C6:

which is the bound on the synchronization achieved.

As noted, the proof that ICA achieves S 1 and S2 subject to A0 and
A2, requires that seven constraints, named CO to C6, on its parameters are
satisfied. We have already seen C6; another is
Constraint C4:

P A 2 6 + E + 2 S.

Synchronization can be achieved only if all seven constraints are satisfied
simultaneously.' However, taking C4 with C6, it can be seen that a necessary
condition is n > 3t.

'The other five constraints are the following. CO: 0 5 t < n; C1: R 2 3 s ; C2: S 2 E;
C3: C 2 A; and C5: 6 2 60 + pR.

2.2. The Hybrid Fault Model and the Modified Algorithm 9

2.2 The Hybrid Fault Model and the Modified
Algorithm

Thambidurai and Park's fault model for distributed consensus distinguishes
three fault modes: manifest faults are those that can be detected by every
nonfaulty processor; symmetric faults deliver wrong rather than detectably
bad values, but all nonfaulty processors receive the same values; arbitrary
faults are completely unconstrained. Because clock synchronization is a
different problem than consensus, we have to reinterpret this fault model for
the present problem, while seeking to retain the plausibility of its motivation.
For clock synchronization, communication between processors is limited to
determination of the clock differences Ari, so the fault model needs to be
expressed in these terms.

In previous work extending the Oral Messages algorithm for consen-
sus [9], it was found that symmetric faults were already dealt with, fortu-
itously, by the ordinary algorithm-though additional analysis is required
to reveal that fact-and that the key to operating under a hybrid fault
model is to diagnose and deal specially with manifest faults. The same is
true for ICA: we have to find a definition for symmetric faults that places
them within the competency of the ordinary algorithm, and a suitable spe-
cial treatment for manifest faults. The special treatment that is suitable for
ICA, as it is for Oral Messages, is simply to exclude manifest-faulty values
from further consideration. Since ICA operates by reading clock differences
and averaging them, we can do this by setting any manifestly faulty read-
ings of clock differences to zero. Although this is really an adjustment to
the algorithm, it is more convenient to formalize it as an additional clause in
its Assumption A2-though it must be realized that the implementation of
the reading of clock differences must be specifically designed to satisfy this
assumption. Methods of detecting manifest faults may include timeouts,
checksums, or other similar tests.

For symmetric faults, we want to capture the behavior of processors
that are doing the wrong thing, but are doing it consistently. For consensus,
this is specified by stating that each nonfaulty receiver gets the same value-
though it may not be the right value. In clock synchronization, there is some
uncertainty in reading clock differences, so we cannot require them to be
the same for different receivers: we can, however, require them to be "close"

l?. It turns out that A is the largest useful value for I'. I formalize these
together-that is require IAgp (i) - AgrI (4 < I' for some suitable parameter

10 Chapter 2. The Algorithm and Its Analysis

interpretations of manifest and symmetric faults in the following restatement
of Assumption A2.
Assumption A2 (for Hybrid Fault Model): If conditions S1 and 5’2
hold for the i ’th period, and processor p is nonfaulty through period i , then

period S(’) such that:
for each other processor q, p obtains a value A q p (4 during the synchronization

e If q = p , then A p p (4 = 0.

e If q is nonfaulty through period i , then [A!;[5 S and

Ic$)(T’ + Afi) - cf)(T’)I < E

for some time T’ in S(’).

e If q is manifest-faulty in period i , then Afi = 0.

e If q is symmetric-faulty in period i , then

/A!! - Afj1 < A

for all nonfaulty processors r.

e If q is arbitrary-faulty in period i , no constmints are placed on the
value Aq (‘1 p .

2.3 Analysis of the Modified Algorithm

The main change in the analysis of the algorithm occurs in Lemma 5.
Lemma 5 (Version for Hybrid Fault Model). If the clock synchro-
nization conditions 5’1 and 5’2 hold for i , processors p and q are nonfaulty
through period i + 1, and T E S(’), then

e If processor T is manifest-faulty in period i, then

(cF)(T) + A?; - [c!)(T) + A:;][< 6

e If processor T i s symmetric-faulty in period i , then

IcF)(T) + A?! - [c f) (T) + A?$I < 6 + A

2.3. Analysis of the Modified Algorithm 11

If processor T is arbitrary-faulty in period i, then

IcF)(T) + A:; - [cf)(T) + A?,$[< 6 + 2A.

Proof: For manifest- and arbitrary-faulty T , we can write

and the result follows on applying S 1 to the first term on the right hand side,
and observing that the Algorithm ensures that the remaining two terms are
zero for manifest-faulty T , and no larger than A for arbitrary-faulty r. For
symmetric-faulty T , we use the inequality

S1 ensures that the first term on the right hand side is no greater than 6;
by expanding the definitions of A?; and A?; (in terms of A?; and A?;?
respectively), and applying the constraint for symmetric-faulty processors
from A2, we see that the second term is no larger than A , and the result
follows. 0

If there are a arbitrary, s symmetric, and m manifest faults, and we set
t = a + s + m (i.e., t is the total number of faults), then the maximum clock
skew between two nonfaulty processors in any point in the period following
resynchronization is bounded by

(k) [(n - t)(2[c + PSI + P A) + a(6 + 2A) + ~ (6 + A) + ms] + P(R + E).
To satisfy S1, this must be no greater than 6, so we obtain the following
version of Constraint C6.
Constraint C6 (for Hybrid Fault Model):

It is easy to check that this can be satisfied simultaneously with C4 only if
n > 3a + 29 + m.

12 Chapter 2. The Algorithm and Its Analysis

2.4 Extensions to the Fault Model

There are a number of useful extensions that can be made to the hybrid fault
model. As presently formulated, a manifest-faulty processor must appear so
to all nonfaulty processors. Communications faults that cause just one or
two processors to receive manifestly erroneous clock readings must, because
of the asymmetry in observed behavior, be counted as arbitrary faults in one
or more of the processors: thus a common and simple kind of fault seems
to be rather expensive to tolerate. In our version of the Oral Messages
algorithm for distributed consensus under the hybrid fault model [9], this
does indeed seem to be the case (at least, in the presence of arbitrary and
symmetric faults); for clock synchronization, however, these kinds of faults
do not exact the same cost. I present two treatments: one widens the class
of faults considered as symmetric, the other introduces link faults as a new
fault mode.

2.4.1

Notice that it is possible to satisfy the symmetric-fault constraint /At; -
A!;[< A when one or both of A!! and A!! exceeds A (as might happen if
processor q has lost synchronization). In this case, the ordinary algorithm
will set one or both of At; or At; to zero. If the algorithm still works in this
case (and we have just seen that it does), then it will also work if either of
A63 or At! had themselves been zero-as would happen if processor r was
asymmetrically (or intermittently) manifest-faulty. We can add this case to
the definition of the symmetric fault mode by changing the corresponding
clause (i.e., the fourth bullet) of the hybrid version of Assumption A2 to
read

Extending the Symmetric Fault Mode

,

a If q is symmetric-faulty in period i, then either At; = 0 or A!; = 0
or

IAfJ - Afjl < A
for all nonfaulty processors r .

The only adjustment required to accommodate this change is the addition
of a new, and straightforward case in the proof of Lemma 5.

This treatment reduces the cost of tolerating an asymmetrically
manifest-faulty processor from that of the arbitrary to the symmetric fault

2.4. Extensions to the Fault Model 13

mode. However, it has the disadvantage of treating the afflicted processor as
faulty and therefore fails to discuss whether that processor can stay synchro-
nized. This will be of interest if the physical source of the faulty behavior is
in the communications links rather than in the processor itself. To provide
a better treatment for faults in the communications links, it is necessary
introduce a new fault mode explicitly for that case.

2.4.2 Link Faults

I will say that a link (q , p) is faulty if the value A!J can appear as if q were
a manifest-faulty processor (i.e., the value can be 0). The strictest fault
model would stipulate that the value should always appear manifest-faulty.
However, the cost of tolerating this fault mode will be in the asymmetries
between A!! and A!;, where (q , r) is a nonfaulty link, and the corresponding
effects on the adjustments made by processors p and r . This asymmetry is
not increased if we allow faulty links to be intermittent-that is to behave
sometimes correctly and sometimes as a source of manifest faults. Thus, I
introduce link faults to the hybrid version of Assumption A2 by amending
the second bullet (q nonfaulty) to require that the link (q , p) is nonfaulty in
period i, and adding the following the clause for the case where the link is
faulty.
Assumption A2 (extra clause for link faults):

e If q is nonfaulty through period i, and (q , p) is link-faulty at period i ,
then either At; = 0 or

/A631 5 S
and

for some time T' in $'I.

Analysis of these faults is undertaken in a modification to Lemma 4.

Lemma 4 (Version for Link Faults). If the clock synchronization
conditions S1 and S2 hold for i , processors p and q are nonfaulty through
period i + 1, processor T is nonfaulty through period i, one or both of (r , p)
and (r , q) is link-faulty in period i, and T E di), then

14 Chapter 2. The Algorithm and Its Analysis

Proof: (Sketch; note, the result is true even if T is one of p or q.) If neither
(~ , p) nor (T , Q) displays faulty behavior, the regular Lemma 4 applies and
the result follows, provided 6 2 + pS + fa. This constraint is examined
below.

If both (~ , p) and (T , Q) display faulty behavior, then the case of Lemma
5 for manifest-faulty T applies and the result follows immediately.

If exactly one of (r , p) and (T , q) displays faulty behavior, then using the
arithmetic identity

z - y = (u - y) - (v - .) + (v - w) - (u - w)

we obtain
Jcg)(T) + A?; - [c f) (T) + A?j]l

= Jcf)(T + A?j) - [c f) (T) t A?l]
- (c t) (T + A?;) - [c t) (T) + A?;])
+ c t) (T + A!%) - c!')(T)
- (c, (a i (T + A?:) - c?)(T))l.

Without loss of generality, suppose it is (T , q) that is faulty, so that A?; = 0.
Making this substitution, rearranging terms, and canceling, we obtain

Icf)(T) t A?; - [cy)(T) + A:;][
- < p (T) - Ct)(T)I

+ Icg)(T $. A?;) - [cg)(T) + A?;]l
t (c t) (T t A?;) - c?)(T)/ .

By S1, the first term on the right hand side is no greater than 6. Using
Lemmas numbered 1 and 2d from the formal verification of the classical
ICA algorithm [17], the second term on the right hand side can be shown
to be no greater than $A, and Lemma 3 from that verification shows that
the final term is no greater then 6 + pS. The result follows. 0

For two nonfaulty processors p and q, let I,, be the number of nonfaulty
processors T such that one or both of (~ , p) and (T , Q) is link-faulty (note
that p or q can be such an T) . Then the worst-case clock skew between two
nonfaulty processors at any point in the period following resynchronization
is bounded by

(:) [(n - a - s - rn - $) (a [€ + pS] t pa)

+ a(6 + 2A) t s(6 t A) t 2,,6 t 7 7 4 t P(R t E).

2.4. Extensions to the Fault Model 15

If we then let I be the maximum over all p and q of l , , (so that I is at most
the number of nonfaulty processors having one or more faulty “outgoing”
links), define t = a + s + m + I, and again assume 6 2 E + pS + $A, this
becomes

which yields the following version of the Constraint C6.
Constraint C6 (for Hybrid Fault Model with Link Faults):

2(n - t + ;) (e + p[S + 41) + (2a + s)A + np(R + E)
n - t 6 2

Taking this with Constraint C4, we can deduce that a necessary (though
not sufficient) condition for the existence of a solution is

12 > 3a+ 29 + m + 1.

It remains to discharge the constraint 6 > E -t pS + $A used above. This
follows from the version of C6 just derived, because n - t 2 2 (otherwise we
cannot discuss synchronization).

Chapter 3

Formal Verification

The real difficulty in proving correctness of ICA and its variants is not in
the arithmetic manipulations performed in the proofs of Lemmas such as 4
and 5 , but in making the whole argument hang together. This argument is a
delicate web of interconnected constraints, assumptions, and lemmas, whose
hypotheses must be stated very carefully. For example, Lemma 4 is required
in the proof of S1, its own proof requires Assumption A2, A2 requires S1,
and all are bound together in an induction. Furthermore, it is necessary to
be careful about the exact durations of the periods in which a processor is
assumed nonfaulty. The flaws in Lamport and Melliar-Smith’s proof of cor-
rectness of ICA [6] were mostly in these details. The mechanically-checked
formal verification of ICA that von Henke and I constructed in 1988 led us
to detect and correct these flaws [17,18]. Our corrected proofs change some
of the assumptions and the statements of the lemmas, and also eliminate the
approximations used by Lamport and Melliar-Smith, yielding correct proofs
that provide simple and exact bounds and that are easier to follow than the
originals.

The improved argument for correctness, and the improved understanding
of that argument that derives from having undertaken formal verification,
made it quite easy to see how to adjust matters to accommodate a hybrid
fault model. Furthermore, although construction of the formal verification
for the original algorithm was a significant effort (at the time, it was one of
the hardest mechanically-checked verifications that had been performed’),

‘It is still a formidable challenge to most theorem proving systems because of the
extensive arithmetic reasoning that is required. Only systems with integrated decision

17

18 Chapter 3. Formal Verification

subsequent tinkering has proved relatively inexpensive. Moreover, it is re-
liable and safe-which modifications to an informal argument seldom are:
a mechanized theorem prover brings the same implacable skepticism to its
second and third (or hundredth) encounter with a given problem as to its
first.

Our formal verification of ICA has been adjusted several times, as new
requirements or opportunities were discovered. For example, the original
verification incorporated an assumption from Lamport and Melliar-Smith
that the initial clock corrections C r) are all zero. Later, when Liu and I were
designing a circuit to read clock differences [ll], we realized that this was
a very inconvenient constraint and wondered if it could be eliminated. We
explored this possibility by simply eliminating the constraint from the formal
specification and rerunning all the proofs (which takes about 20 minutes on a
S P A R C ~) . We found that the proofs of a few internal lemmas failed, but that
they could be adjusted to use slightly different arguments without affecting
the rest of the verification.

Another adjustment to the verification derived from the discovery, made
by Palumbo and Graham in measurements of a hardware implementation of
the interactive convergence algorithm, that the observed worst-case skew is
significantly better than that predicted by the standard Constraint C6 [15].
They showed that observation and theory could be brought into much closer
agreement by using the fact that there is no error when a processor reads its
own clock. The improved bound is easily incorporated into the formal veri-
fication by noting that the constraint in Lemma 4 is halved when processor
T is one of p or q. This allows the factor 2 in the first term of C6 to reduced

. Because the parameters to the algorithm are interrelated, this
adjustment also permits a reduction in the bound on A, which is significant
for the second term in C6. Overall, these adjustments yield improvements
of 10% to 25% in numerical estimates of the worst-case skew. More detail
on these improvements is provided in Appendix A.

Extending the formal verification of ICA to accommodate Palumbo and
Graham’s improved bound required development of a body of lemmas con-
cerning finite summations. Previously, it had only been necessary to split
the summation over clock differences into two-according to whether pro-
cessor T is faulty or nonfaulty-and an ad-hoc treatment was adequate. For

n-t-1 to 2-

procedures for real and integer arithmetic stand any chance of completing the proof at
reasonable cost. (The full proof has over 200 mechanically-checked lemmas.) It has been
repeated just once: by Young [25], using the Boyer-Moore prover.

19

Palumbo and Graham's bound, it was necessary to split the summation fur-
ther according to whether T is the same as one of p or q, and it seemed better
to develop a more general theory of summations. Availability of this general
theory made it feasible to contemplate hybrid faults (where the summation
needs to be further subdivided according to fault mode).

For the hybrid algorithm, it was the work of a couple of hours to ad-
just the formal specification and develop a mechanically-checked proof for
the hybrid version of Lemma 5 (an excerpt is reproduced in Appendix B).
However, a whole day was spent without success trying to carry through the
full proof for the hybrid case (without link faults). Eventually, the source
of the problem was found in an unexpected location: in the statement of
Lemma 4 (which is unchanged from the classical case when link faults are
not considered). Following Lamport and Melliar-Smith, the hypotheses to
our version of this lemma require that processors p , q, and T are nonfaulty
through period i+ 1. Because the lemma is concerned with the skew between
processors p and q in the i + 1st period, these processors must indeed be
nonfaulty in this period. However, the role of processor T is to provide its
clock differences to processors p and q in the resynchronization that occurs
at the end of period i. Thus, it is only necessary that processor T should
be nonfaulty through period i. With this adjustment, the hypotheses of the
standard version of Lemma 4 coincide with those of the hybrid version of
Lemma 5 and the full proof can be completed. The overly strong hypothesis
in the original Lemma 4 concerning processor r did not affect verification of
the classical algorithm because that makes no assumptions about the behav-
ior of faulty processors (thus the condition of processor T is not mentioned
in the hypotheses to the original Lemma 5) . The new algorithm and its
verification have to consider the mode of failure of processor T at period i
in Lemma 5 , and so Lemma 4 has to be adjusted accordingly.

Our formal verification combines treatment of the hybrid fault model
with the improved bound on clock skew due to [15] and verifies the following
constraint on clock skew.
Constraint C6:

A 2 a + s npR npC
A + - + - n - t n - t '

6 2 2(n - - "(c + p[S t 21) + -
n - t n - t

The extension to link faults has not been formally verified, since this fault
model requires a more substantial adjustment to the formal specification
than was feasible in the time available.

Chapter 4

Conclusions

The work presented here widens the fault model for clock synchronization to
include three realistic fault modes-manifest , symmetric, and link faults-in
addition to the arbitrary or Byzantine case. A simple adjustment to the In-
teractive Convergence algorithm, and slightly more complicated adjustments
to its analysis, yield a formally verified algorithm that performs well under
each of these fault modes and their combinations. Among synchronization
algorithms suitable for the architectures used in digital flight control, this
algorithm seems to provide the most robust fault tolerance for a given level
of redundancy.

Although the main change needed to accommodate the hybrid fault
model (without link faults) is in Lemma 5 , formal verification revealed the
unexpected need to adjust the statement of Lemma 4 also. I consider it un-
likely that this would have been discovered in an ordinary journal-style proof.
As it happens, this adjustment has no further repercussions, but that is mere
good fortune. This experience reinforces the conviction I have acquired from
undertaking many other verifications: the intricate correctness arguments
for fault-tolerant algorithms are often flawed (and sometimes the algorithms
have bugs); only mechanically-checked formal verification seems able to pro-
vide adequate assurance for these safety-critical algorithms. Small changes,
even those with a convincing informal proof of correctness, should be viewed
with suspicion and the full mechanically-checked verification should be re-
peated following any change. (Recall that the statement of Lemma 4 had
been satisfactory in previous formal verifications; it only became inadequate
when hybrid faults were considered.)

21

22 Chapter 4. Conclusions

Fortunately, a formal specification and verification is a reusable intellec-
tual resource, and it can be relatively inexpensive-as well as reliable and
safe-to adjust a mechanically-checked verification to accommodate changed
assumptions or requirements. I believe this is an inadequately recognized
benefit of formal verification. Other benefits that are similarly underesti-
mated by those who see mechanically-checked formal analysis only in terms
of “proof of correctness” include: debugging (i.e., discovery of incorrectness),
complete enumeration of assumptions, sharpened statements of assumptions
and lemmas, streamlined arguments, and an enhanced understanding that
can lead to further improvements.

For future investigations, I suggest extending other clock synchroniza-
tion algorithms in a similar manner to that described here. Shankar’s
mechanically-checked formal verification [21,22] of Schneider’s general treat-
ment [20] would be a good starting place for formal investigation of such ex-
tensions (particularly with Miner’s formally verified extension to transient-
recovery for the Welch-Lynch instantiation [13,24]).

Another interesting topic for future investigation is the apparent diver-
gence in fault-tolerance between algorithms for consensus and those for clock
synchronization when hybrid fault models are considered. As we have seen,
the hybrid interactive convergence algorithm for clock synchronization is
able to withstand a arbitrary, 9 symmetric, and m manifest faults simul-
taneously, provided n, the number of processors satisfies n > 3a + 29 + m,
whereas the T-round version of the hybrid Oral Messages algorithm for con-
sensus requires n > 2a+29+ m+ T and a < T [9]. When only arbitrary faults
are present, we have a = T and n > 3a, so both algorithms exhibit optimal
fault tolerance. But when only manifest or symmetric faults are present,
the hybrid Oral Messages algorithm appears suboptimal (in that additional
rounds decrease the number of faults that can be tolerated). In fact, sep-
arate analysis shows that the number of faults tolerated by hybrid Oral
Messages is optimal when only manifest faults are present (n - 1 can be tol-
erated, independently of the number of rounds), but that the suboptimality
is real when only symmetric faults are present (if T > 0). Furthermore, the
hybrid Oral Messages algorithm does not appear able to tolerate link faults,
whereas hybrid interactive convergence does so inexpensively. It seems that
the approximate nature of clock synchronization is helpful in these cases,
and an interesting direction for future work is to examine whether the ap-
proximate agreement version of distributed consensus [2] is better suited to
the hybrid fault model than exact agreement.

23

Acknowledgement Ricky Butler of NASA Langley Research Center
modified the original formal specification and verification of the Interac-
tive Convergence algorithm to make better use of the capabilities of recent
versions of EHDM.

References

[l] Ricky W. Butler, Daniel L. Palumbo, and Sally C. Johnson. Appli-
cation of a clock synchronization validation methodology to the SIFT
computer system. In Fault Tolerant Computing Symposium 15, pages
194-199, Ann Arbor, MI, June 1985. IEEE Computer Society.

[2] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark,
and William E. Weihl. Reaching approximate agreement in the presence
of faults. Journal of the ACM, 33(3):499-516, July 1986.

[3] Juan A. Garay and Kenneth J. Perry. A continuum of failure mod-
els for distributed computing. In A. Segall and s. Zaks, editors, Dis-
tributed Algorithms (6th International Workshop WDAG '92), volume
647 of Lecture Notes in Computer Science, pages 153-165, Haifa, Israel,
November 1992. Springer-Verlag.

[4] A. H. Infis and W. R. Moore. Economic approach to fault-tolerant syn-
chronization. IEE Proceedings, Part E: Computers and Digital Tech-
niques, 135(2):82-86, March 1988.

[5] R. M. Kieckhafer, C. J. Walter, A. M. Finn, and P. M. Thambidurai.
The MAFT architecture for distributed fault tolerance. IEEE Tmns-
actions on Computers, 37(4):398-405, April 1988.

[6] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the pres-
ence of faults. Journal of the ACM, 32(1):52-78, January 1985.

[7] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. A CM Transactions on Programming Languages and
Systems, 4(3):382-401, July 1982.

25

26 References

[8] Patrick Lincoln and John Rushby. Formal verification of an algorithm
for interactive consistency under a hybrid fault model. In Costas Cour-
coubetis, editor, Computer-Aided Verification, CAV '93, volume 697 of
Lecture Notes in Computer Science, pages 292-304, Elounda, Greece,
June/ July 1993. Springer-Verlag.

[9] Patrick Lincoln and John Rushby. Formal verification of an algorithm
for interactive consistency under a hybrid fault model. NASA Contrac-
tor Report 4527, NASA Langley Research Center, Hampton, VA, July
1993.

[lo] Patrick Lincoln and John Rushby. A formally verified algorithm for
interactive consistency under a hybrid fault model. In Fault Tolerant
Computing Symposium 23, pages 402-411, Toulouse, France, June 1993.
IEEE Computer Society.

[ll] Erwin Liu and John Rushby. A formally verified module to support
Byzantine fault-tolerant clock synchronization. Project report 8200-
130, Computer Science Laboratory, SRI International, Menlo Park, CA,
December 1993.

[12] Fred J. Meyer and Dhiraj K. Pradhan. Consensus with dual fail-
ure modes. IEEE Transactions on Parallel and Distributed Systems,
2(2):214-222, April 1991.

[13] Paul S. Miner. Verification of fault-tolerant clock synchronization sys-
tems. NASA Technical Paper 3349, NASA Langley Research Center,
Hampton, VA, November 1993.

[14] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, 11th International Conference on Au-
tomated Deduction (CADE), volume 607 of Lecture Notes i n Artificral
Intelligence, pages 748-752, Saratoga, NY, June 1992. Springer-\brlag.

[15] Daniel L. Palumbo and R. Lynn Graham. Experimental d i d a t i o n of
clock synchronization algorithms. NASA Technical Paper 2857. S ASA
Langley Research Center, Hampton, VA, July 1992.

[16] Kenneth J. Perry and Sam Toueg. Distributed agreement in the pres-
ence of processor and communication faults. IEEE Transactions on
Soft~are Engineering, SE-12(3):477-481, March 1986.

References 27

[17] John Rushby and Friedrich von Henke. Formal verification of the In-
teractive Convergence clock synchronization algorithm using EHDM.
NASA Contractor Report 4239, NASA Langley Research Center,
Hampton, VA, June 1989.

[18] John Rushby and F'riedrich von Henke. Formal verification of algo-
rithms for critical systems. IEEE Tmnsactions on Software Engineer-
ing, 19(1):13-23, January 1993.

[19] John Rushby, F'riedrich von Henke, and Sam Owre. An introduction
to formal specification and verification using EHDM. Technical Report
SRI-CSL-91-2, Computer Science Laboratory, SRI International, Menlo
Park, CA, February 1991.

[20] Fred B. Schneider. Understanding protocols for Byzantine clock syn-
chronization. Technical Report 87-859, Department of Computer Sci-
ence, Cornell University, Ithaca, NY, August 1987.

[21] Natarajan Shankar. Mechanical verification of a schematic Byzantine
fault-tolerant clock synchronization algorithm. NASA Contractor Re-
port 4386, NASA Langley Research Center, Hampton, VA, July 1991.

[22] Natarajan Shankar. Mechanical verification of a generalized protocol
for Byzantine fault-tolerant clock synchronization. In J. Vytopil, editor,
Formal Techniques in Real- Time and Fault- Tolerant Systems, volume
571 of Lecture Notes in Computer Science, pages 217-236, Nijmegen,
The Netherlands, January 1992. Springer-Verlag.

[23] Philip Thambidurai and You-Keun Park. Interactive consistency with
multiple failure modes. In 7th Symposium on Reliable Distributed Sys-
tems, pages 93-100, Columbus, OH, October 1988. IEEE Computer
Society.

[24] J. Lundelius Welch and N. Lynch. A new fault-tolerant algorithm for
clock synchronization. Information and Computation, 77(1):l-36, April
1988.

[25] William D. Young. Verifying the Interactive Convergence clock-
synchronization algorithm using the Boyer-Moore prover. NASA Con-
tractor Report 189649, NASA Langley Research Center, Hampton, VA,
April 1992.

Appendix A

The Improved Bound on
Synchronization Achieved

The clock skew achieved by the Interactive Convergence Clock Synchro-
nization Algorithm is shown (in the proof of the result known as Theorem
1 [6,17,18]) to be bounded by

(i) [(n - t) (2 [~ + PSI + p a) + t (6 t 2A)]+ p(R t E). (A 4

In this expression, the term 2 [~ + pS] + pA comes (in the proof of the result
known as Lemma 4) from considering the maximum differences that two
nonfaulty processors p and q can form in their estimates of the clock value
of another nonfaulty processor r . Similarly, the term 6 t 2A comes (in
the proof of the result known as Lemma 5) from considering the maximum
differences that two nonfaulty processors p and q can form in their estimates
of the clock value of a faulty processor T . Since there are t faulty processors,
and therefore n - t nonfaulty processors, the final bound is obtained by
taking the mean of n - t copies of the first term, and t of the second.

Notice that the explanation of the first term speaks of the differences in
the estimates that two nonfaulty processors p and q form of the clock value
of another nonfaulty processor r ; since p and q themselves are nonfaulty
processors, there must be one case among the n - t considered as T ranges
over the nonfaulty processors where p = T , and another where q = r . It
seems reasonable that a processor reads its own clock value with zero error,
and therefore that the constraint 2 [~ t pS] + pA can be tightened in the case
where one of p or q equals r .

29

30 Appendix A. The Improved Bound on Synchronization Achieved

This is indeed the case: the bound in Lemma 4 is halved when one of p
or q equals T . (This result depends on more careful calculation, it does not
require adjustment to the axioms.) Using this improved result, the bound
on the overall skew becomes

(:) [(n - t - 1) (2 [c + pS] + P A) + t(6 + 2A)] + p(R + E).

(Notice the factor n - t on the first term has changed to n - t - 1 .) This
allows the constraint C6 on the value of 6, the maximum clock skew to
change from

to

The result (A.2) also allows the bound on E, the maximum adjustment
made by any clock, to be changed from C 2 A (this is the constraint C 3)
to C 2 ?A.

The observation that the bounds on the maximum clock skew (6) and
adjustment (E) in ICA can be improved in the manner just described is due
to Palumbo and Graham [15]. In their report, Palumbo and Graham also
describe other adjustments to the constraints on ICA:

1. Their constraint C6 eliminates the small terms W p S and 5 p C

2 . They change the constraint C 2 from S 2 C to S 2 2A

3. They change the constraint C 1 from R 2 3s to R 2 S + C.

I have not attempted to factor these three additional adjustments into
the formal verification. The first of these is of little practical significance
(because p is very small in any realistic implementation), and the elimina-
tion of these terms from Palumbo and Graham’s proof rests on informal
arguments that I do not see how to formalize. The second adjustment does
not seem an improvement: we would like to give implementers maximum
freedom on the selection of S (the clock synchronization interval). Since
C 2 h A n (this is constraint C 3) , Palumbo and Graham’s version of C 2

31

more than doubles the minimum allowed value for S. The change in the
constraint C1 is a straightforward consequence of the change to C2 and also
seems regressive: it changes the minimum allowed value of R from 3C to
2A + C.

Despite these quibbles with their choice of minor constraints, the im-
provement in the bound on maximum clock skew due to Palumbo and Gra-
ham, as represented in our version by (A.3), is very significant. In the
common case of TZ = 4 and no faults, it reduces the bound by 25 percent
(the figures for five clocks and for six clocks are 20 percent and 16.6 percent,
respectively). In the presence of a single fault, the new bound reduces the
contribution of the first term in (A.l) by 33.3 percent, 25 percent, and 20
percent, respectively, for the cases n = 4,5, and 6. In the presence of faults,
the overall value of (A.l) is dominated by the contribution of the second
term and this, in turn, is dominated by the choice of the parameter A. Now
one of the constraints on A is C4:

which, after combining with the original constraint C6 and neglecting small
terms, yields

3(n - t)
n - 3t

E. A 2

Using (A.3), however, this constraint becomes

3n - 3t - 2
n - 3t

€. A 2

In the case of one faulty processor (t = l) , this improved bound reduces A
by 22.2 percent, 16.6 percent, and 13.3 percent, respectively, for the cases
TZ = 4, 5, and 6, with corresponding reductions in the bound on the worst-
case skew.

The results of representative calculations are tabulated in Table A.l,
which shows the worst-case skews for the cases of four, five, and six proces-
sors, and with zero, and with one faulty processor. In each case, we give
the result corresponding to the original constraint C6, that corresponding
to the improved version (A.3) but with the original value of A, and that
with the optimized value of A allowed by (A.3). The parameters used in
constructing this table are those from SIFT [l] (S = 3.2msec., = 66.1psec.,
and p = 15 x

32

4
4
4
5
5
5
6
6
6

Appendix A. The Improved Bound on Synchronization Achieved

C6 t = O t = l
original 0.61 0.134 0.541
improved 0.61 0.101 0.497
optimized 0.47 0.101 0.404
original 0.41 0.134 0.339
improved 0.41 0.107 0.306
optimized 0.34 0.107 0.271
original 0.34 0.134 0.270
improved 0.34 0.112 0.244
optimized 0.29 0.112 0.224

1 n I Constraint I A I Maximum skew

Table A. l : Improvements in Maximum Clock Skew

Appendix B

A Fragment of the Formal
Specification and
Verification

As an illustrative fragment of the text submitted to the EHDM formal ver-
ification system, the statement and proof of the manifest-faulty case of the
hybrid version of Lemma 5 is reproduced below. The specification has been
prettyprinted by EHDM. The text of the full verification is 110 pages long.

The list following the FROM keyword in the PROVE declaration enumer-
ates the lemmas, axioms, and definitions to be used in the proof; the material
in braces indicates substitutions to be made for quantified variables. Given
this information, EHDM generates a ground formula by Skolemization and
substitution for free variables, and then applies a decision procedure for a
combination of theories including real and integer arithmetic and proposi-
tional calculus. The whole process takes only a couple of seconds.

33

34 Appendix B. A Fragment of the Formal Specification and Verification

lemmdhybrid : MODULE

USING lemma3-hybrid, lemma4, lemma5,
algorithm-hybrid, algorithm, clockprops

THEORY
p , q , r : VAR proc
T : VAR clocktime
i , j : VAR period
lemma5-manifest : LEMMA

SlC(P, 9,
A S2(P,i)

A S 2 (q , i)
A nonfaulty(p, i t 1)

A nonfaulty(q, i + 1)
A fault-type(r, i) = manifest A T E S(')

3 J C t) (T) + A g - (cF)(T) + A!J)l 5 6

lemma5-man$est-proof : PROVE lemrna5-rnanifest
FROM
s1 c,
inRS,
A2-manifest { q t T } ,

Ahmanifest { p t q , q t r } ,

nonfx, nonfx { p t q } ,
abs-ax0

- (i) - (i)
ATP, AT 9 ,

...
END lemma5-hybrid

~ ~

REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (L ~ w blank)

Form Approved I OM8 NO. 0704-0188

2. REPORTDATE 3. REPORT TYPE AND DATES COVERED

March 1996 Contractor Report
4. TITLEANDSUBTITLE

A Formally Verified Algorithm for Clock Synchronization Under a Hybrid
Fault Model

6. AUTHOR(S)

John Rushby

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(=)

SRI International
333 Ravenswwd Ave.
Menlo Park, CA 94025

9. SPONSORING I MONITORING AGENCY NAME@) AND ADDRESS(=)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681 -0001

5. FUNDING NUMBERS

C NAS1-18969 Task 7

WU 505-64-10-13

1

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Ricky W. Butler
Final Report

Unclassaied--Unlimited

Subject Category 62

1- DISTRIBUTION I AVAIUBUIY STATEMENT 12b. DISTRIBUT" CODE

I
13. ABSTRACT (Muimum 2w -0)

8. PERFORMING ORGANWTlON

ECU8200-170
REPORT NUMBER

14. SUWECTTERMS 15. NUMBER OF PAGES

Clock synchronization, Formal Methods, Byzantine fault tolerance, Hybrid fault
models, Formal methods, Formal verification

41
18. miciicooii
A03

17. SECURITY CLASSIRCATlON 18. SECURITY CLASSIFEATION 19. SECURrrY C U S S l F l C " 20. LIMITAllON OF ABSTRACT
OF REPORT OF TnlS PAaE OFABSTRACT

Unclassified Unclassified
I

10. SPONSORING I MONITORING
AGENCY REPORT NUMBER

NASA CR-198289

